合成過程
蛋白質(zhì)合成
原核生物與真核生物的蛋白質(zhì)合成過程中有很多的區(qū)別,真核生物此過程更復(fù)雜,下面著重介紹原核生物蛋白質(zhì)合成的過程,并指出真核生物與其不同之處。蛋白質(zhì)生物合成可分為五個階段,氨基酸的活化、多肽鏈合成的起始、肽鏈的延長、肽鏈的終止和釋放、蛋白質(zhì)合成后的加工修飾。直接模板
翻譯模板protein biosynthesis
不同mRNA序列的分子大小和堿基排列順序各不相同,但都具有5ˊ-端非翻譯區(qū)、開放閱讀框架區(qū)、和3ˊ-端非翻譯區(qū);真核生物的mRNA的5ˊ-端還有帽子結(jié)構(gòu)、3ˊ-端有長度不一的多聚腺苷酸(polyA)尾。帽子結(jié)構(gòu)能與帽子結(jié)合,在翻譯時參與mRNA在核糖體上的定位結(jié)合,啟動蛋白質(zhì)生物的合成;帽子結(jié)構(gòu)和ployA尾的作用還有穩(wěn)定RNA;開放閱讀框架區(qū)與編碼蛋白質(zhì)的基因序列相對應(yīng)。
遺傳密碼表在mRNA的開放式閱讀框架區(qū),以每3個相鄰的核苷酸為一組,代表一種氨基酸或其他信息,這種三聯(lián)體形勢稱為密碼子(codon)。如圖,通常的開放式閱讀框架區(qū)包含500個以上的密碼子。
遺傳密碼的特點一方向性:密碼子及組成密碼子的各堿基在mRNA序列中的排列具有方向性(direction),翻譯時的閱讀方向只能是5ˊ→3ˊ。
二連續(xù)性:mRNA序列上的各個密碼子及密碼子的各堿基是連續(xù)排列的,密碼子及密碼子的各個堿基之間沒有間隔,每個堿基只讀一次,不重疊閱讀。
三簡并性:一種氨基酸可具有兩個或兩個以上的密碼子為其編碼。遺傳密碼表中顯示,每個氨基酸都有2,3,4或6個密碼子為其編碼(除甲硫氨酸只有一個外),但每種密碼子只對應(yīng)一個氨基酸,或?qū)?yīng)終止信息。
四通用性:生物界的所有生物,幾乎都通用這一套密碼子表
五擺動性:tRNA的最后一位,和mRNA的對應(yīng)不完全,導(dǎo)致了簡并性
合成場所
核糖體就像一個小的可移動的工廠,沿著mRNA這一模板,不斷向前迅速合成肽鏈。氨基酰tRNA以一種極大的速率進(jìn)入核糖體,將氨基酸轉(zhuǎn)到肽鏈上,又從另外的位置被排出核糖體,延伸因子也不斷地和核糖體結(jié)合和解離。核糖體和附加因子一道為蛋白質(zhì)合成的每一步驟提供了活性區(qū)域。
有關(guān)信息
氨基酸活化蛋白質(zhì)合成
在進(jìn)行合成多肽鏈之前,必須先經(jīng)過活化,然后再與其特異的tRNA結(jié)合,帶到mRNA相應(yīng)的位置上,這個過程靠tRNA合成酶催化,此酶催化特定的氨基酸與特異的tRNA相結(jié)合,生成各種氨基酰tRNA.每種氨基酸都靠其特有合成酶催化,使之和相對應(yīng)的tRNA結(jié)合,在氨基酰tRNA合成酶催化下,利用ATP供能,在氨基酸羧基上進(jìn)行活化,形成氨基酰-AMP,再與氨基酰tRNA合成酶結(jié)合形成三聯(lián)復(fù)合物,此復(fù)合物再與特異的tRNA作用,將氨基酰轉(zhuǎn)移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(圖1)。簡介內(nèi)容原核細(xì)胞中起始氨基酸活化后,還要甲?;纬杉柞5鞍彼醫(yī)RNA,由N10甲酰四氫葉酸提供甲酰基。而真核細(xì)胞沒有此過程。前面講過運載同一種氨基酸的一組不同tRNA稱為同功tRNA。一組同功tRNA由同一種氨?;鵷RNA合成酶催化。氨基酰tRNA合成酶對tRNA和氨基酸兩者具有專一性,它對氨基酸的識別特異性很高,而對tRNA識別的特異性較低。氨基酰tRNA合成酶是如何選擇正確的氨基酸和tRNA呢?按照一般原理,酶和底物的正確結(jié)合是由二者相嵌的幾何形狀所決定的,只有適合的氨基酸和適合的tRNA進(jìn)入合成酶的相應(yīng)位點,才能合成正確的氨?;鵷RNA?,F(xiàn)在已經(jīng)知道合成酶與L形tRNA的內(nèi)側(cè)面結(jié)合,結(jié)合點包括接近臂,DHU臂和反密碼子臂(圖2)。氨基酰-tRNA合成酶與tRNA的相互作用,可見氨酸接受柄、乍看起來,反密碼子似乎應(yīng)該與氨基酸的正確負(fù)載有關(guān),對于某些tRNA也確實如此,然而對于大多數(shù)tRNA來說,情況并非如此,人們早就知道,當(dāng)某些tRNA上的反密碼子突變后,但它們所攜帶的氨工酸卻沒有改變。1988年,候稚明和Schimmel的實驗證明丙氨酸t(yī)RNA酸分子的氨基酸臂上G3:U70這兩個堿基發(fā)生突變時則影響到丙氨酰tRNA合成酶的正確識別,說明G3:U70是丙氨酸t(yī)RNA分子決定其本質(zhì)的主要因素。tRNA分子上決定其攜帶氨基酸的區(qū)域叫做副密碼子。一種氨基酰tRNA合成酶可以識別以一組同功tRNA,這說明它們具有共同特征。例如三種丙氨酸t(yī)RNA(tRNAAlm/CUA,tRNAAim/GGC,tRNAAin/UGC都具有G3:U70副密碼子。)但沒有充分的證據(jù)說明其它氨基酰tRNA合成酶也識別同功tRNA組中相同的副密碼子。另外副密碼子也沒有固定的位置,也可能并不止一個堿基對。
多肽鏈解析
核蛋白體大小亞基,mRNA起始tRNA和起始因子共同參與肽鏈合成的起始。
1、大腸桿菌細(xì)胞翻譯起始復(fù)合物形成的過程:
⑴核糖體30S小亞基附著于mRNA起始信號部位:原核生物中每一個mRNA都具有其核糖體結(jié)合位點,它是位于AUG上游8-13個核苷酸處的一個短片段叫做SD序列。這段序列正好與30S小亞基中的16S rRNA3’端一部分序列互補(bǔ),因此SD序列也叫做核糖體結(jié)合序列,這種互補(bǔ)就意味著核糖體能選擇mRNA上AUG的正確位置來起始肽鏈的合成,該結(jié)合反應(yīng)由起始因子3(IF-3)介導(dǎo),另外IF-1促進(jìn)IF-3與小亞基的結(jié)合,故先形成IF3-30S亞基-mRNA三元復(fù)合物。
⑵30S前起始復(fù)合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始tRNA與mRNA分子中的AUG相結(jié)合,即密碼子與反密碼子配對,同時IF3從三元復(fù)合物中脫落,形成30S前起始復(fù)合物,即IF2-3S亞基-mRNA-fMet-tRNAfmet復(fù)合物,此步需要GTP和Mg2+參與。
蛋白質(zhì)合成
⑶70S起始復(fù)合物的形成:50S亞基上述的30S前起始復(fù)合物結(jié)合,同時IF2脫落,形成70S起始復(fù)合物,即30S亞基-mRNA-50S亞基-mRNA-fMet-tRNAfmet復(fù)合物。此時fMet-tRNAfmet占據(jù)著50S亞基的肽酰位。而A位則空著有待于對應(yīng)mRNA中第二個密碼的相應(yīng)氨基酰tRNA進(jìn)入,從而進(jìn)入延長階段,以上過程見圖3和圖4。2、真核細(xì)胞蛋白質(zhì)合成的起始真核細(xì)胞蛋白質(zhì)合成起始復(fù)合物的形成中需要更多的起始因子參與,因此起始過程也更復(fù)雜。
⑴需要特異的起始tRNA即,-tRNAfmet,并且不需要N端甲?;?。已發(fā)現(xiàn)的真核起始因子有近10種(eukaryote Initiation factor,eIF)
⑵起始復(fù)合物形成在mRNA5’端AUG上游的帽子結(jié)構(gòu),(除某些病毒mRNA外)
⑶ATP水解為ADP供給mRNA結(jié)合所需要的能量。
真核細(xì)胞起始復(fù)合物的形成過程是:
翻譯起始也是由eIF-3結(jié)合在40S小亞基上而促進(jìn)80S核糖體解離出60S大亞基開始,同時eIF-2在輔eIF-2作用下,與Met-tRNAfmet及GTP結(jié)合,再通過eIF-3及eIF-4C的作用,先結(jié)合到40S小亞基,然后再與mRNA結(jié)合。mRNA結(jié)合到40S小亞基時,除了eIF-3參加外,還需要eIF-1、eIF-4A及eIF-4B并由ATP水解為ADP及Pi來供能,通過帽結(jié)合因子與mRNA的帽結(jié)合而轉(zhuǎn)移到小亞基上。但是在mRNA5’端并未發(fā)現(xiàn)能與小亞基18SRNA配對的S-D序列。目前認(rèn)為通過帽結(jié)合后,mRNA在小亞基上向下游移動而進(jìn)行掃描,可使mRNA上的起始密碼AUG在Met-tRNAfmet的反密碼位置固定下來,進(jìn)行翻譯起始。
肽鏈步驟
多肽鏈的延長在多肽鏈上每增加一個氨基酸都需要經(jīng)過進(jìn)位,轉(zhuǎn)肽和移位三個步驟。⑴為密碼子所特定的氨基酸t(yī)RNA結(jié)合到核蛋白體的A位,稱為進(jìn)位。氨基酰tRNA在進(jìn)位前需要有三種延長因子的作用,即,熱不穩(wěn)定的E(Unstable temperature,EF)EF-Tu,熱穩(wěn)定的EF(stable temperature EF,EF-Ts)以及依賴GTP的轉(zhuǎn)位因子。EF-Tu首先與GTP結(jié)合,然后再與氨基酰tRNA結(jié)合成三元復(fù)合物,這樣的三元復(fù)合物才能進(jìn)入A位。此時GTP水解成GDP,EF-Tu和GDP與結(jié)合在A位上的氨基酰tRNA分離。
多肽鏈詳情
一級結(jié)構(gòu)加工修飾⑴N端甲酰蛋氨酸或蛋氨酸的切除:N端甲酰蛋氨酸是多肽鏈合成的起始氨基酸,必須在多肽鏈折迭成一定的空間結(jié)構(gòu)之前被切除。其過程是:① 去甲?;虎?去蛋氨?;?。
⑵氨基酸的修飾:由專一性的酶催化進(jìn)行修飾,包括糖基化、羥基化、磷酸化、甲?;取?/p>
⑶二硫鍵的形成:由專一性的氧化酶催化,將-SH氧化為-S-S-。
⑷肽段的切除:由專一性的蛋白酶催化,將部分肽段切除。
高級結(jié)構(gòu)的形成⑴構(gòu)象的形成:在分子內(nèi)伴侶、輔助酶及分子伴侶的協(xié)助下,形成特定的空間構(gòu)象。
⑵亞基的聚合。⑶輔基的連接。
靶向輸送蛋白質(zhì)合成后,定向地被輸送到其執(zhí)行功能的場所稱為靶向輸送。大多數(shù)情況下,被輸送的蛋白質(zhì)分子需穿過膜性結(jié)構(gòu),才能到達(dá)特定的地點。因此,在這些蛋白質(zhì)分子的氨基端,一般都帶有一段疏水的肽段,稱為信號肽。分泌型蛋白質(zhì)的定向輸送,就是靠信號肽與胞漿中的信號肽識別粒子(SRP)識別并特異結(jié)合,然后再通過SRP與膜上的對接蛋白(DP)識別并結(jié)合后,將所攜帶的蛋白質(zhì)送出細(xì)胞。
信號肽假說:信號肽位于新合成的分泌蛋白N端。對分泌蛋白的靶向運輸起決定作用。①細(xì)胞內(nèi)的信號肽識別顆粒(SRP)識別信號肽,使肽鏈合成暫時停止,SRP引導(dǎo)核蛋白體結(jié)合粗面內(nèi)質(zhì)網(wǎng)膜;②SRP識別、結(jié)合內(nèi)質(zhì)網(wǎng)膜上的對接蛋白,水解GTP使SRP分離,多肽鏈繼續(xù)延長;③信號肽引導(dǎo)延長多肽進(jìn)入內(nèi)質(zhì)網(wǎng)腔后,經(jīng)信號肽酶切除。分泌蛋白在高爾基體包裝成分泌顆粒出胞。
生物調(diào)控
蛋白質(zhì)合成的調(diào)控生物體內(nèi)蛋白質(zhì)合成的速度,主要在轉(zhuǎn)錄水平上,其次在翻譯過程中進(jìn)行調(diào)節(jié)控制。它受性別、激素、細(xì)胞周期、生長發(fā)育、健康狀況和生存環(huán)境等多種因素及參與蛋白質(zhì)合成的眾多的生化物質(zhì)變化的影響。由于原核生物的翻譯與轉(zhuǎn)錄通常是偶聯(lián)在一起的,且其mRNA的壽命短,因而蛋白質(zhì)合成的速度主要由轉(zhuǎn)錄的速度決定。弱化作用是一個通過翻譯產(chǎn)物的過量與不足首先影響轉(zhuǎn)錄,從而調(diào)節(jié)翻譯速度的一種方式。mRNA的結(jié)構(gòu)和性質(zhì)也能調(diào)節(jié)蛋白質(zhì)合成的速度。
HCR兩種狀態(tài)真核生物轉(zhuǎn)錄與翻譯不是偶聯(lián)的,通常蛋白質(zhì)合成的速度比原核生物慢。真核生物除了主要通過轉(zhuǎn)錄和轉(zhuǎn)錄后加工及mRNA的結(jié)構(gòu)和性質(zhì)(如帽子結(jié)構(gòu)和多聚A尾巴等)(見信使核糖核酸)進(jìn)行調(diào)控外,通過對珠蛋白生物合成研究表明,真核起始因子eIF-2是翻譯速度的限制因子,因此影響eIF-2的因素能調(diào)節(jié)翻譯的速度。用哺乳動物網(wǎng)織紅細(xì)胞的無細(xì)胞制劑進(jìn)行離體研究指出,當(dāng)缺乏血紅素時,因為無法形成血紅蛋白,沒有必要合成蛋白質(zhì)。實驗證明血紅素的調(diào)控是通過一種稱為血紅素調(diào)控阻遏物(HCR)實現(xiàn)的。HCR有活潑和不活潑的兩種狀
血紅素的影響血紅素通過影響eIF-2對蛋白質(zhì)進(jìn)行調(diào)控。當(dāng)血紅素存在時,抑制了胞蛋白質(zhì)合成,而且還能促進(jìn)通常不合成血紅蛋白的細(xì)胞合成蛋白質(zhì),如促進(jìn)肝癌細(xì)胞、海拉細(xì)胞和腹水瘤細(xì)胞無細(xì)胞制劑的蛋白質(zhì)合成。
蛋白質(zhì)抑制劑蛋白質(zhì)生物合成的抑制劑 許多蛋白質(zhì)生物合成抑制劑具有高度專一性,這對于研究合成機(jī)制很重要。許多臨床有效的抗生素是通過特異抑制原核生物的蛋白質(zhì)合成而發(fā)揮作用的,它們抑制細(xì)菌生長而不損害人體細(xì)胞。利用兩類生物蛋白質(zhì)合成的差異,可以找出治療細(xì)菌感染引起的疾病的藥物。表中列出一些較為重要的蛋白質(zhì)生物合成抑制劑及其作用部位和專一性。